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abstract

Integrating different types of data, including electronic health records, imaging data, administrative and claims
databases, large data repositories, the Internet of Things, genomics, and other omics data, is both a challenge
and an opportunity that must be tackled head on. We explore some of the challenges and opportunities in
optimizing data integration to accelerate breast cancer discovery and improve patient outcomes. Susan G.
Komen convened three meetings (2015, 2017, and 2018) with various stakeholders to discuss challenges,
opportunities, and next steps to enhance the use of big data in the field of breast cancer. Meeting participants
agreed that big data approaches can enhance the identification of better therapies, improve outcomes, reduce
disparities, and optimize precision medicine. One challenge is that databases must be shared, linked with each
other, standardized, and interoperable. Patients want to be active participants in research and their own care,
and to control how their data are used. Many patients have privacy concerns and do not understand how sharing
their data can help to effectively drive discovery. Public education is essential, and breast cancer researchers
who are skilled in using and analyzing big data are needed. Patient advocacy groups can play multiple roles to
help maximize and leverage big data to better serve patients. Komen is committed to educating patients on big
data issues, encouraging data sharing by all stakeholders, assisting in training the next generation of data
science breast cancer researchers, and funding research projects that will use real-life data in real time to
revolutionize the way breast cancer is understood and treated.
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INTRODUCTION

Susan G. Komen envisions a world with a seamless web
of health care information, where patients are informed
and empowered to use their data to improve their health
care; electronic health records (EHRs) are connected to
other data sources to provide evidence-based support
for clinical decision making; many, if not all, patients
participate in clinical research; data systems are linked,
secure, and easily accessible; genomics and other
omics are universally available and user friendly; re-
searchers can mine enhanced data sets to address
questions; and most importantly, fewer people die of
breast cancer and quality of life improves for those living
with the disease. Unfortunately, this world does not yet
exist. The health care community currently faces many
challenges and opportunities to efficiently use data to
more effectively treat patients. Komen convened
three Big Data for Breast Cancer (BD4BC) meetings
to foster open dialog among experts and strategically
invited a wide array of participants (patient advo-
cates, oncologists, bioethicists, laboratory researchers,

genomic- and proteomics-based companies, big data-
focused pharmaceutical companies, and data soft-
ware companies) to discuss the status of, challenges
in, and barriers to optimizing big data and the op-
portunities big data can provide to advance health
care (Fig 1).

The first meeting (New York, NY, October 2015) fo-
cused on the barriers, opportunities, needs, priorities,
and solutions concerning the challenge of improving
breast cancer research and care through big data. The
follow-up meetings (Menlo Park, CA, February 2017
and 2018) focused on data infrastructure; research in
and with big data; clinical applications for big data; and
how to leverage data to attain health equity and im-
prove methods for aggregating and analyzing clinical,
genomic, and other sources of data for patients with
metastatic breast cancer.

Meeting participants (Table 1) defined big data as the
integration of large amounts of different types of data,
including EHRs, administrative and health insurance
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claims databases, large data repositories (registries and
cohorts), and genomics and other omics data. Partici-
pants identified important issues in effectively using big
data to improve breast cancer research and clinical
care, and they outlined an action plan to focus Komen’s
efforts. We share the insights gained from these
meetings and Komen’s planned actions to leverage big
data to reduce the number of breast cancer deaths.

As recently as 15 years ago, individual patient data were
only available in paper charts located at a single institution
and inaccessible to others outside that institution. Data
from epidemiologic studies, cooperative group trials, and
individual laboratories were often quantitatively modest,
dispersed, and not open to sharing except through
manuscripts and public presentations.1 The world of data
is rapidly changing, and the amount of data related to
breast cancer has exploded. Within the past decade,
various types of data are now routinely collected: personal
and family history; breast density; patient-reported out-
comes; imaging data; clinical trial data; genomics and
other omics; annotated mutations; biospecimens; and
social, environmental, and behavioral data. Big data can

potentially alter how breast cancer is perceived, studied,
and treated (Fig 2).

TECHNOLOGY INNOVATION

Technologic innovation has drastically changed the land-
scape of almost all industries in recent history, including
health care, with new technologic advancements made
every year. Adoption of EHRs in the United States has
profoundly changed how patient data are collected, stored,
and used.2 The scale of data collection through EHRs is
stunning. One of us (M.L.) reported at the third BD4BC
meeting that in 2015, one health care system’s EHR was
accessed by 11,000 people per day, creating 6.8 million
clinic notes that year, and was associated with 1.7 million
outpatient electronic prescriptions and 15 million clinical
communications that year.

Furthermore, genomics, proteomics, metabolomics, radio-
mics, and other emerging omics platforms are expanding the
data generated in health care.3 Decreasing costs and in-
creasing availability of such tests allow clinicians to evaluate
tumors via whole exome, genome, or deep sequencing.
These are becoming part of the standard of care. Another
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FIG 1. Distribution of Komen’s Big Data for Breast Cancer (BD4BC) meeting participants on the basis of their
primary expertise. Omics experts were the most represented in the first two meetings (35% and 29%, respectively).
A more equal distribution of expertise was reached at the 2018 meeting among patient-centered data and systems,
data analytics and learning systems, and data integration and management (15% to 23% each), highlighting the
intent to work on solutions to big data challenges in breast cancer and implementation. Looking at all 148 unique
participants who attended Komen’s BD4BC meetings, the most represented areas of expertise were omics (27%),
data analytics and learning systems (19%), data integration andmanagement (17%), and oncology and patient care
(11%). BD4BC\WC, West Coast (second BD4BC meeting); BD4BC3, third BD4BC meeting.
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area with a rapidly growing platform generating large
amounts of individual-specific data is the Internet of Things
(IoT), which includes all devices attached to the Internet that
generate data.4 Wearable devices (eg, fitness trackers)
generate continuous, multiparameter, individual-specific
data. Garments and ingestible devices are emerging
technologies.4 IoT data can be downloaded, summarized
across populations, and attached to other data sets for
analysis. By 2020, an estimated 200 billion devices will be
connected to the Internet and generating continuous data,
with approximately 30% of these data predicted to have
medical applications.4

With rapid technologic advances and vast amounts of data
come challenges that must be overcome to make efficient
use of the technology and data being collected. Big data
technologies, such as EHRs, omics, and IoT, provide great
potential, but these technologies remain siloed and not
interoperable.5,6 Data are often limited geographically and

by age group and type of care. Worse, data are often subject
to misinterpretation regarding the intent when initially
collected,7 partly because of lack of annotation and doc-
umentation. The use of these technologies is also limited by
the inability of different platforms to communicate with
each other, hospital firewalls that create barriers to sharing
data, privacy issues (real and perceived), and the lack of
financial models to incentivize storage, sharing, and in-
tegration. Structured (eg, laboratory tests, demographics,
diagnosis) and unstructured (eg, doctor notes, pathology
reports, radiology reports) data in EHRs are not currently
standardized, nor can current natural language-processing
methods routinely and accurately extract handwritten notes
within EHR systems to use these data more efficiently.6

Managing and using big data may necessitate certain re-
quirements unique to these data sets, including support for
all data formats; data mobility; easy access through
industry-standard application programming interfaces;

TABLE 1. List of Planning Committee Members and Invited Speakers to Each of Komen’s BD4BC Meetings
BD4BC New York, NY
October 8-9, 2015

BD4BC\WC Menlo Park, CA
February 23-24, 2017

BD4BC3 Menlo Park, CA
February 1-2, 2018

Sir John Bell, GBE, FRS, FMedSci, FREng
(Oxford University)

Amy Abernethy, MD, PhD (Flatiron
Health)

Amy Abernethy, MD, PhD (Flatiron Health)

Nancy Brinker (Susan G. Komen) Cheryl Jernigan, CPA, FACHE (Susan
G. Komen [patient advocate])

Regina Barzilay, PhD (Massachusetts Institute of
Technology)

Sir Rory Collins, FMedSci FRS
(University of Oxford)

Mia Levy, MD, PhD (Vanderbilt-
Ingram Cancer Center)

Christopher Boone, PhD, FACHE (Pfizer)

Robert Cook-Deegan, MD (Duke Global Health
Institute)

Gaurav Singal, MD (Foundation
Medicine)

Aradhana Ghosh, MD (Syapse)

Henry Friedman, MD (Duke University) George Sledge Jr, MD (Stanford
University)

Cheryl Jernigan, CPA, FACHE (Susan G. Komen
[patient advocate])

Elad Gil, PhD (Color Genomics) Gary Thompson, JD, MBA (CLOUD) Gaurav Kaushik, PhD (Foundation Medicine)

Todd Golub, MD (Dana-Farber Cancer Institute) Crystal Valentine, PhD (MapR
Technologies)

Mia Levy, MD, PhD (Vanderbilt-Ingram
Cancer Center)

Cheryl Jernigan, CPA, FACHE (Susan G. Komen
[patient advocate])

Nikhil Wagle, MD (The Broad Institute
and Dana-Farber Cancer Institute)

Joshua Mann (SHARE for Cures and Inspirata)

Mia Levy, MD, PhD (Vanderbilt-Ingram
Cancer Center)

John Mattison, MD (Kaiser Permanente)

Jane Perlmutter, PhD (patient advocate) Joan Neuner, MD, MPH (Medical College of
Wisconsin)

Judy Salerno, MD, MS (Susan G. Komen) Lily Peng, MD, PhD (Google Research)

Charles Sawyers, MD (Howard Hughes Medical
Institute, Memorial Sloan Kettering Cancer Center)

Jennifer Pietenpol, PhD (Vanderbilt-Ingram Cancer
Center)

George Sledge Jr, MD (Stanford University) Katherine Reeder-Hayes, MD, MBA, MS
(University of North Carolina, Chapel Hill)

Marc Tessier-Levigne, FRS, FRSC, FMedSci
(Rockefeller University)

George Sledge Jr, MD (Stanford University)

Eric Winer, MD (Dana-Farber Cancer Institute) Shyrea Thompson (Susan G. Komen)

NOTE. Planning Committee members are in bold type. Affiliations are at the time of each meeting.
Abbreviations: BD4BC\WC, West Coast (second BD4BC meeting); BD4BC3, third BD4BC meeting; CLOUD, Consortium for Local Ownership and Use of
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multiple processing engines; and a strong, unified security
model. To meet these prerequisites in breast cancer, a field
with extensive research and clinical data, investments must
be made. This includes the technology to support devel-
opment of these systems and applications and harness the
power of these enhanced data sets in big data projects.
Although data storage remains a challenge, many com-
panies are creating scalable solutions for data storage,
including health data.

Technologic innovation brings opportunities to accelerate
research discovery and improve patient care. Precision
medicine can be achieved by using big data technologies to
combine different types and sources of data to identify
patterns, determine optimal treatments for individuals, and
improve their outcomes.8 Imaging is another technologic
opportunity where big data can be leveraged in breast
cancer. Technologic advancements are transforming how
physicians interact with clinical images. Approximately 75
million mammograms are performed annually worldwide,
currently requiring a large amount of personnel time to read
and analyze the results of each test.

Emerging advances in artificial intelligence (AI) methods
(eg, convolutional neural networks and deep learning) are
being used in mammography to distinguish patients with
benign, malignant, and negative disease,9 and objectively

assess breast density.10 Similar advances are taking place
in magnetic resonance imaging, where machine learning is
being used to predict patients’ response to therapy and
outcomes.11 Big data imaging applications can be used to
automate image reading and generate reports without
human interaction, allowing radiologists to only review
images not easily interpreted by the algorithms. Images
can also be computer-enhanced, highlighting features to
guide radiologists’ expert interpretation.12 Radiologists
can then focus on reading images with complex features,
reviewing and designing personalized treatment plans,
and providing overall quality control to constantly deliver
optimal patient care.13 Preliminary results suggest that the
best outcome of incorporating machine learning in radi-
ology occurs when radiologists are part of the decision
process in reviewing and approving the output of the
algorithms.14

RESEARCH APPLICATION

Much hope has been placed in using real-world data (RWD;
data collected outside clinical trials) or real-world evidence
(RWE, RWD plus analytics) to complement knowledge
gathered from clinical trials.15 Successfully using RWD and
RWE requires numerous factors: aggregated, high-quality,
complete, longitudinal data sets; reproducibility and prov-
enance; patient-level data linkage; end points and out-
comes; study objectives and analysis plans; and careful
cohort selection. Social, ethical, and legal challenges exist
for using RWD. Although these data are often not stan-
dardized, natural language processing and other advanced
technologies such as AI can help simplify extraction of
unstructured data.16

Another challenge is that big data are less well curated than
other classic data sets (eg, prospective clinical trials and
epidemiologic registries). This causes garbage-in–garbage-
out concerns. Perhaps the biggest barrier in big data re-
search application is that basic laboratory and clinical
translational researchers often have no expertise in the
multidimensional analytics and visualization tools that big
data requires. Research funding organizations (public and
private) often do not provide support to cover costs of data
annotation, curation, and sharing, and they rarely support
training programs focused on big data.

Applying big data to research applications offers enormous
possibilities, with the potential to solve questions currently
unanswerable in traditional research laboratories. Big data
approaches are particularly powerful with cross-platform
analyses, such as combining EHRs or clinical trial out-
comes data with omics data sets. For example, The Cancer
Genome Atlas collects data (omics, RNA and DNA se-
quences, expression information, and clinical metadata)
from more than 10,000 patients with cancer and 33 dif-
ferent types of cancer.17 With various tools to interrogate
The Cancer Genome Atlas database, drivers of endocrine
therapy resistance in breast cancer were identified.18

Patient-reported
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Genomics
and

other omics
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outcomes for
patients with
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FIG 2. The amount of data related to breast cancer has exploded. The
integration of various types of data (patient-reported outcomes; im-
aging data; electronic health record data; genomics and other omics;
and so on) can fuel scientific discoveries and lead to improved
outcomes for patients with breast cancer.
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Machine learning was successfully used on those data to
identify miRNA biomarkers in breast cancer.19

PROs, RWD, and RWE represent other areas where big
data can be generated and harnessed for research
applications.15 PROs include data collected directly from
patients (eg, quality of life and functional status) that are not
interpreted by physicians or others.20 Because only ap-
proximately 3% of patients with cancer participate in
clinical trials, big data approaches to PROs and RWD/RWE
may represent realistic ways of integrating information
about under-represented populations and finding solutions
to previously intractable clinical problems. Using EHR or
IoT data sets, in contrast to clinical trials, allows in-
terrogation of extremely large numbers of patients and
generation of enormous volumes of RWD. Passing of the
21st Century Cures Act21 and the Prescription Drug User
Fee Act Reauthorization22 has resulted in regulatory
guidance on how to interrogate this information. Flatiron
Health has created a clinicogenomic database containing
real-world, longitudinal, patient-level clinical EHR data from
cancer clinics. Their goal is to use RWD to answer clinical
questions. These data are linked to deep, next-generation
sequence profiling across hundreds of cancer-related
genes for each patient’s tumor, as assessed by Founda-
tion Medicine (Cambridge, MA).23 Pharmaceutical com-
panies and the US Food and Drug Administration are also
active in the field and understand the value of RWD/RWE in
developing and regulating medical products.24,25

Komen’s BD4BCmeetings offered valuable insights into the
great and unmet need to advance training in and improve
access to big data. Breast cancer researchers without
a data science focus could be trained in the field of data
science by participating in workshops and conferences to
learn new methods, skills, and techniques to advance their
research projects using big data. Effective use of big data to
improve breast cancer care can also be facilitated by
bringing together data set owners, both nonprofit and for-
profit, with data scientists, with the goal of creating access
to breast cancer data sets for research. Komen and similar
organizations are well positioned to meet this demand. For
example, new award programs could be established to
support data sharing, multidisciplinary research projects,
and cross training of investigators.

PRIVACY AND DATA SHARING

The roles of laws and regulations, institutional constraints,
and patients themselves in how data are both protected
and shared need to be considered.7 Many patients are
motivated to share their data,26 as shown by patients’
willingness to actively participate in data sharing in re-
search projects such as the Metastatic Breast Cancer
Project. Several thousand patients with metastatic breast
cancer have registered to share their data for research.27 A
similar participation response was recently obtained by the
National Institutes of Health (NIH) with their All of Us

study.28 Patients’ desire for new knowledge about their
disease often outweighs their privacy concerns. Still, many
patients have questions about what control they have
over their data, electronic accessibility,26 privacy, and
data security, and why data sharing is important.

Government laws and regulations make medical data one of
the few remaining bastions of privacy. The Health Insurance
Portability and Accountability Act of 1996 and the Office of
Human Research Protection limit access to patient records
and tissues. This makes research challenging because much
of the medical data are housed in data silos and unavailable
for clinical or research use. In addition to the Health Insurance
Portability and Accountability Act and Office of Human Re-
search Protection, siloed data have additional barriers, in-
cluding business or proprietary interests, privacy concerns,
transaction costs associated with data infrastructure and data
sharing, and the nature of local legacy systems.

Although data sharing has become more common, it is
often inefficient because data must be standardized, de-
identified, and possibly shared via an institutional review
board–approved study with appropriate participant con-
sent. This presents another challenge because most pa-
tients only agree to one study at a time, meaning re-consent
is needed for each use.29 The growing number of com-
panies that view patient data as a commercial asset is
particularly concerning. What a patient originally agreed to
share with his or her initial consent may be unknown.
Whether data can be shared for additional investigations
and commercial purposes is unknown.6 Other challenges
to data sharing include interface glitches, moving data
between formats, and questions of whether the data de-
positor is legally liable if public data are misinterpreted by
another user.7 Some companies do not want their data
placed in a centralized, accessible location because they
want to retain control of them, retain exclusive rights to their
analyses, and/or monetize the data and their usage.
Overall, little incentive exists to share or make data readily
and easily accessible.

Patient advocacy organizations such as Komen can help
address some of the problems associated with data sharing,
starting with educating and advocating for patient needs and
concerns regarding privacy and data sharing. In turn, the
government can resolve issues about multiagency informed
consent and establish privacy rules and structures to allow
data sharing while protecting patients. Some research
funding organizations (NIH, Komen, the Bill and Melinda
Gates Foundation, and so on) require funded researchers to
share their data.7,30 Key agencies (NIH, National Science
Foundation, European Research Council, and Research
Councils UK) promote the concept of open data, where data
are released to public databases.1 Other examples, such as
NIH’s Gene Expression Omnibus and cBioPortal, intend to
place data in public databases so researchers can integrate
them and learn from them. The various layers of data should
be present in platforms that allow integration and enable
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a deep dive into what is happening to individual patients. A
link back to the individual (while maintaining security and
privacy) for additional data collection is preferable. Financial
support for infrastructure, curation, de-identification, sus-
tainability, and appropriate guidelines is necessary to im-
plement this requirement.1

Another highlight from Komen’s BD4BC meetings is that
motivation for sharing data may increase if patients learn the
value of sharing information for big data-driven research and
if the study results are shared with patients. Komen is
committed to empowering the patient community with in-
formation and tools to make data sharing understandable
and easy. Training to empower patient advocates to par-
ticipate in the data science research process should be
offered. This highlights the important role patient advocates
can play in demanding that data be shared, such as
pressuring different stakeholders to work together toward
a common goal, urging sustainability of good ideas, and
requesting that study results be shared with patients. In-
cluding patient advocates early in discussions can lead to
better, faster, and more accepted results by the public. This
is critical for moving big data efforts forward. Better
knowledge about patients’ decision making regarding data
sharing will lead to more effective distribution of information
to help themmake key decisions about their health and care.

PATIENT CARE APPLICATION

Many emerging technologies, such as the previously
mentioned omics platforms and wearable devices, are
beginning to generate actionable, individual-specific data
that can be used to improve patient care. Historically, the
tumor of a patient with breast cancer might be evaluated at
the protein level for hormone receptors, human epidermal
growth factor receptor 2, and Ki67 and at the transcriptome
level with a multigene assay such as Oncotoype Dx
(Genomic Health, Redwood City, CA), MammaPrint
(Agendia, Irvine, CA), or others.31 Today, that same
tumor can undergo whole exome, genome, or deep se-
quencing. Investigations of the microbiome32 and liquid
biopsies33 are other emerging data sources. Such data can
provide guidance on the likelihood a given patient with
breast cancer will benefit from chemotherapy.34 This type
of testing has also stratifiedmore than 15 subtypes of breast
cancer, allowing omics data to inform prognoses and
treatments.3,35,36

Cases showing the actual value of big data in patient care
are currently lacking. A few anecdotal examples of how big
data are being integrated in the patient care workflow exist.
For example, one of us (M.L.) created an analytic dash-
board to leverage patient data and show patients’ care
status in near–real time. It was used to evaluate the in-
stitution’s policy to delay breast biopsies by 7 days for
women taking any type of anticoagulants. The dashboard
ultimately led to changing the policy and to women un-
dergoing biopsy sooner.

For millions of patients with breast cancer, EHRs represent
an important, comprehensive resource for patient care.
Because patients continuously receive care, EHRs allow
longitudinal tracking of long-term outcomes (eg, time re-
ceiving therapy and safety events). EHR-based treatment
plans are also being used to reduce medication errors
compared with prior paper-based approaches, increase
standardization, and allow retrieval of data for quality
measures within institutions.

Challenges remain with EHR systems. A primary goal of big
data should be to optimize doctors’ ability to care for pa-
tients. With the integration of omics analyses in EHRs to
drive clinical decision, EHR systems have become large
enterprises, requiring large infrastructure and computa-
tional power many clinics cannot afford. Current EHRs
frequently decrease clinical efficiency, demoralize phy-
sicians by turning them into data entry specialists, and
decrease time of direct patient-physician interaction.
Physicians feel EHR systems exist primarily to aid hospital
billing, rather than facilitate patient care. One of us (G.S.)
highlighted what was at stake in improving how physicians
interact with EHR systems to optimize patient care: “Save
a doctor’s time, save a patient’s life.”

An identified opportunity for EHR systems is their ability to
revolutionize how quality of care is assessed. Qualitymeasures
(eg, ASCO’s Quality Oncology Practice Initiative metrics)
should flow seamlessly from EHRs, and clinical decision
support should become a standard aspect of EHRs. Including
genomic and other omics data directly in EHRs should pro-
mote high-level clinical decision support and improved access
to clinical trials to realize the full potential of precision med-
icine. The expected result is higher-quality, more cost-
effective treatment that is precise and targeted to the patient.

HEALTH EQUITY

Although projects using genomic data to inform treatment
decisions show promising results in breast cancer, the use
of big data to reduce health disparities in breast cancer care
is limited.37 A recent example is the ACCURE (Account-
ability for Cancer Care Through Undoing Racism and
Equity) quality improvement trial, which focused on the
racial disparity in completing treatment of curable breast
cancer. This disparity contributes to worse survival among
African Americans. This trial used an EHR system to create
a real-time registry of patients that alerted the health care
team when participants missed appointments or had an
unmet care milestone. This system was paired with patient
navigation and clinical feedback. The intervention im-
proved treatment completion and helped reduce racial
disparities in treatment of these patients.38 ACCURE ex-
emplifies the power of harnessing big data to address
health disparities in breast cancer care. More of these types
of projects are needed.

In some cases, big data itself could be a source of disparities.
The resources, knowledge, and infrastructure needed to use
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big data may not be available to all care providers and
patients. The patient populations at health systems with
sophisticated EHRs, data sharing systems, and capabil-
ities to collect and store biospecimens for later analysis
are likely not representative of the true diversity of pa-
tients across all settings.37 Thus, any advancement
resulting from big data should be designed and imple-
mented for the maximum number of individuals who can
benefit from it. Minority populations should be ade-
quately represented in data sets so that safe and ef-
fective treatment strategies for all patients can be drawn
from the results of studies using them.

Increasing efforts to better classify breast cancer are
driving wide use of molecularly based precision medicine
in oncology practice. Data have always been the back-
bone of epidemiology and population health studies to
investigate breast cancer incidences and identify in-
terventions that affect outcomes. Access to big data can
supercharge these types of data-fueled studies by pro-
viding an ever-growing number of data points and char-
acteristics about everyone within a population.37 AI may
be able to identify patterns within subpopulations that
predict the risk of occurrences, recurrences, and gen-
erally worse outcomes, as well as optimal, tailored treat-
ment plans. These studies may allow more efficient
access to care, better treatment adherence by patients
within the continuum of care, and more precise identifi-
cation and management of at-risk populations. Big data
may truly facilitate personalized medicine, regardless of
race, ethnicity, or other characteristics.

DISCUSSION

With the growing availability of PROs and RWD, AI will likely
affect clinical practice and clinical trial design in the near
term, and increase our understanding of patients’ response
to therapy.

Yet, most of the general public and many patients are
unaware of or have concerns about big data and its ap-
plication to cancer research and treatment. Developing and
implementing educational resources (eg, fact sheets, Web
portal on big data, patient advocate training) will be critical
to making data sharing understandable and easy. Patients
want to control the use of their data.4 An educated, engaged
advocacy community is crucial for BD4BC to succeed.
Komen will start by developing an online knowledge portal
designed as a hub of information for visitors to advance
their knowledge about big data.

Meeting participants repeatedly mentioned the lack of both
data scientists working in breast cancer and laboratory and
clinical researchers who are fluent in big data analytics. Komen
and similar organizations can support researcher education by
providing funding opportunities to train breast cancer re-
searchers in big data and attract data scientists to apply big
data to solve remaining challenges in breast cancer.39 A central
directory of existing breast cancer data sets available to big data
scientists to use in breast cancer research is essential.

In addition, support must exist for projects that will ac-
celerate the technologic advancement and innovative
thinking necessary to discover novel targets for precision
medicine and provide earlier detection that will affect

Big data for patients
BD4BC communications
BD4BC knowledge portal

Empower the public

with information and
tools to make data

sharing understandable
and easy to do 

Big data travel scholarships
BD4BC hackathons
Breast cancer data directory
BD4BC meetings

Address challenges of

incorporating big data

applications into breast
cancer research and

clinical care 

Big data research projects
BD4BC workshops

Use big data to fuel

scientific discoveries

and accelerate the
delivery of equitable,
patient-focused care 

Using big data to fuel scientific
discoveries and accelerate the delivery of

equitable, patient-focused care  

FIG 3. Komen’s Big Data for Breast Cancer (BD4BC) initiative. The initiative is aimed at using big data to fuel scientific
discoveries and accelerate the delivery of equitable, patient-focused care. Komen is following a three-pronged
approach (white boxes) in developing several programs (pink boxes) that will specifically address some of the
challenges identified during Komen’s BD4BCmeetings and detailed in this article. Bold text indicates the main action
items of this initiative.
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patients with breast cancer, including those living with
metastatic breast cancer. Organizations such as Komen can
leverage their grant-making capabilities to identify and
support big data research resources and projects that put the
patient at the center of innovation to inform and accelerate
the pace of breast cancer research and improve patient care.

Funding is needed to support data science projects and
infrastructure for aggregation, visualization, and modeling
of patient- and laboratory-derived big data. Review criteria,
eligibility requirements, and expenses allowed under such
funding must change to accommodate the specific needs
of data science projects. Public advocacy is needed so
initiatives can leverage big data to support adherence to
treatment and participation in clinical trials, and enforce
safety, security, data standards, accessibility, and sharing
requirements. Protection of minorities and underserved
populations in the big data revolution is needed to ensure

these groups are included in the progress big data will
make toward better breast cancer outcomes.

In conclusion, many opportunities were identified at
Komen’s BD4BC meetings to harness big data to benefit
patients with breast cancer. Now is the time to move for-
ward. Komen is working with partners to design BD4BC
initiatives to improve outcomes for patients with breast
cancer (Fig 3). Strategies include educating the public to
make data sharing understandable and easy, addressing
challenges of incorporating big data applications into breast
cancer research and clinical care, and funding data sci-
ence projects. Komen will continue to advocate for putting
the patient at the center of innovation and support efforts
using big data to fuel scientific discoveries and accel-
erate the delivery of improved, equitable, and patient-
focused care. Komen invites other organizations to join in
realizing this big data revolution.
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